protocol-book
  • Salis Lab Protocol Book
  • Getting Started
  • Modeling & Algorithms
    • Linux
      • Install
      • Using Bash
      • CRUD Files & Directories
      • Text Editors
      • Git
    • Server Computing
      • ssh
      • High Performance Computing
      • Cloud Computing
    • Dev
      • How to be a Pythonista
      • Developing Python Packages
      • Setting up a repo
    • Bioinformatics Tools
      • BLAST
      • BWA-mem
      • kallisto
      • mfold
      • OligoAnalyzer
      • OligoCalc
      • ViennaRNA
    • DNA Sequence Editors
      • A Plasmid Editor
      • Benchling
    • Online Resources
      • Addgene
      • CGSC
      • EcoCyc
      • Genbank (NCBI)
      • RegulonDB
  • Molecular Biology
    • Microbiology Lab
      • Personal Protective Equipment
      • Aseptic Technique
      • Media & Recipes
      • Growing Bacteria
      • Enumerating Bacteria
      • Storing Bacteria
      • Bacteriophages
    • Lab Equipment
      • Shaker Incubators
      • Genetic QPix2 Colony Picker
      • NanoDrop
      • Thermal Cyclers
      • Microplate Reader
      • Microplate Incubator
  • Design Genetic Systems
    • Models and Design Algorithms
      • Getting started
      • RBS Calculator
      • RBS Library Calculator
      • Riboswitch Calculator
      • Operon Calculator
      • Non-Repetitive Parts Calculator
      • Synthesis Success Calculator
      • PyVRNA
      • RNAdynamics
      • Dependencies
      • Glossary
      • UIPAC Code
      • Jupyter tutorials
  • Build Genetic Systems
    • Plan and Execute Your DOE
    • DNA
      • Ordering DNA
      • DNA Assembly
      • Anneal Oligonucleotides
      • PCR
      • PCR Cleanup
      • PCR Assembly
      • Gel Extraction
      • Plasmid Extraction
      • Genomic Library Preparation
    • Restriction Cloning
      • Restriction Enzyme Digestion
      • Ligation with T4 DNA Ligase
    • Multi-Fragment Assembly
      • Golden Gate
      • LCR
      • Gibson Assembly
      • TA Cloning
    • Genome Editing
      • Lambda Red Recombination
      • MAGE
      • pORTMAGE
      • CRISPR/Cas9
    • Transformation and Integration
      • E. coli Electroporation
      • E. coli Heat Shock
      • B. subtilis
  • Test
    • DNA
      • Gel Electrophoresis
      • Sanger Sequencing
      • Illumina
      • LCR-Seq
    • Protein
      • Flow Cytometry
      • Fluorescence Activated Cell Sorting
      • Gram's Iodine Stain
      • LacZ (beta-gal)
      • Microplate Fluoresence
      • Neurosporene
      • SDS-PAGE
      • TX-TL Crude Cell Extract Prep
      • Transcription-Translation (TX-TL)
    • RNA
      • Spin Column-Based Extraction
      • Phenol-Chloroform Extraction
      • Reverse Transcriptase (RT)
      • qPCR with TaqMan
      • qPCR with SYBR Green
      • Targeted RNA-Seq
      • Transcriptome RNA-Seq
      • T7 HiScribe Kit RNA Synthesis
      • T7 RNAP Reaction Clean-Up
    • Metabolite
      • HPLC
      • LC-MS
    • Other
      • TCSPC
      • MinION
Powered by GitBook
On this page
  1. Molecular Biology
  2. Microbiology Lab

Enumerating Bacteria

How to measure cell density or number of viable cells in liquid media.

PreviousGrowing BacteriaNextStoring Bacteria

Last updated 6 years ago

There are two standard ways of measuring cell density in the lab.

Using a spectrophotometer

Measuring the optical density (OD), or turbidity, of a liquid cell culture with either the (cuvette mode) or in a 96-well microplate in the . Usually the sample is measured at a wavelength of 600 nm, referred to as the OD600 value. The selection of 600 nm is because there is minimal absorption at that wavelength and you are only measuring light scattering. You are looking for a direct relationship between cell biomass and change in light transmission, that does not vary with physiology of the cell, the production of metabolites, or the media that is used. See the page for the protocol to measuring cell density.

Counting colonies

This is an old school approach that can give a very reliable measurement for the number of viable cells in a liquid culture. The protocol is as follows.

NanoDrop
TECAN Spark
NanoDrop